ADK 的 Vertex AI RAG Engine 工具¶
Supported in ADKPython v0.1.0Java v0.2.0
vertex_ai_rag_retrieval 工具允许智能体使用 Vertex AI RAG Engine 执行私有数据检索。
当你使用 Vertex AI RAG Engine 基础功能时,你需要事先准备一个 RAG 语料库。请参阅 RAG ADK 智能体示例 或 Vertex AI RAG Engine 页面 以设置它。
警告:每个智能体单个工具限制
此工具在智能体实例中只能单独使用。 有关此限制和解决方法的更多信息,请参阅 ADK 工具的限制。
# Copyright 2025 Google LLC
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
from google.adk.agents import Agent
from google.adk.tools.retrieval.vertex_ai_rag_retrieval import VertexAiRagRetrieval
from vertexai.preview import rag
from dotenv import load_dotenv
from .prompts import return_instructions_root
load_dotenv()
ask_vertex_retrieval = VertexAiRagRetrieval(
name='retrieve_rag_documentation',
description=(
'Use this tool to retrieve documentation and reference materials for the question from the RAG corpus,'
),
rag_resources=[
rag.RagResource(
# please fill in your own rag corpus
# here is a sample rag corpus for testing purpose
# e.g. projects/123/locations/us-central1/ragCorpora/456
rag_corpus=os.environ.get("RAG_CORPUS")
)
],
similarity_top_k=10,
vector_distance_threshold=0.6,
)
root_agent = Agent(
model='gemini-2.0-flash-001',
name='ask_rag_agent',
instruction=return_instructions_root(),
tools=[
ask_vertex_retrieval,
]
)