循环智能体¶
LoopAgent
¶
LoopAgent
是一种工作流智能体,它循环(即迭代)执行其子智能体。它_重复运行_一系列智能体,执行指定次数的迭代或直到满足终止条件。
当你的工作流涉及重复或迭代改进时,如修改代码,请使用 LoopAgent
。
示例¶
- 你想构建一个可以生成食物图像的智能体,但有时当你想生成特定数量的物品(例如 5 个香蕉)时,它生成的图像中包含了不同数量的物品(例如一张有 7 个香蕉的图像)。你有两个工具:
generate_image
、count_food_items
。因为你想不断生成图像,直到它正确生成指定数量的物品,或者达到一定的迭代次数,所以你应该使用LoopAgent
构建你的智能体。
与其他工作流智能体一样,LoopAgent
不是由 LLM 驱动的,因此它的执行方式是确定性的。也就是说,工作流智能体只关注它们的执行方式(即循环),而不是它们的内部逻辑;工作流智能体的工具或子智能体可能使用也可能不使用 LLM。
工作原理¶
当调用 LoopAgent
的 run_async()
方法时,它执行以下操作:
- 子智能体执行: 它_按顺序_遍历
sub_agents
列表。对于_每个_子智能体,它调用该智能体的run_async()
方法。 -
终止检查:
至关重要的是,
LoopAgent
本身_不_固有地决定何时停止循环。你_必须_实现一个终止机制以防止无限循环。常见的策略包括:max_iterations
:在LoopAgent
中设置最大迭代次数。循环将在达到该迭代次数后终止。- 来自子智能体的升级:设计一个或多个子智能体来评估条件(例如,"文档质量是否足够好?","是否已达成共识?")。如果满足条件,子智能体可以发出终止信号(例如,通过触发自定义事件、在共享上下文中设置标志,或返回特定值)。
完整示例:迭代文档改进¶
想象一个你想要迭代改进文档的场景:
- 编写智能体: 一个生成或改进主题草稿的
LlmAgent
。 -
评论智能体: 一个对草稿进行评论,识别需要改进的领域的
LlmAgent
。
在这个设置中,LoopAgent
将管理迭代过程。CriticAgent
可以被设计为在文档达到令人满意的质量水平时返回"STOP"信号,防止进一步迭代。或者,可以使用 max_iterations
参数将过程限制为固定数量的循环,或者可以实现外部逻辑来做出停止决定。循环将最多运行五次,确保迭代改进不会无限期继续。
完整代码
# Part of agent.py --> Follow https://google.github.io/adk-docs/get-started/quickstart/ to learn the setup
import asyncio
import os
from google.adk.agents import LoopAgent, LlmAgent, BaseAgent, SequentialAgent
from google.genai import types
from google.adk.runners import InMemoryRunner
from google.adk.agents.invocation_context import InvocationContext
from google.adk.tools.tool_context import ToolContext
from typing import AsyncGenerator, Optional
from google.adk.events import Event, EventActions
# --- Constants ---
APP_NAME = "doc_writing_app_v3" # New App Name
USER_ID = "dev_user_01"
SESSION_ID_BASE = "loop_exit_tool_session" # New Base Session ID
GEMINI_MODEL = "gemini-2.0-flash"
STATE_INITIAL_TOPIC = "initial_topic"
# --- State Keys ---
STATE_CURRENT_DOC = "current_document"
STATE_CRITICISM = "criticism"
# Define the exact phrase the Critic should use to signal completion
COMPLETION_PHRASE = "No major issues found."
# --- Tool Definition ---
def exit_loop(tool_context: ToolContext):
"""Call this function ONLY when the critique indicates no further changes are needed, signaling the iterative process should end."""
print(f" [Tool Call] exit_loop triggered by {tool_context.agent_name}")
tool_context.actions.escalate = True
# Return empty dict as tools should typically return JSON-serializable output
return {}
# --- Agent Definitions ---
# STEP 1: Initial Writer Agent (Runs ONCE at the beginning)
initial_writer_agent = LlmAgent(
name="InitialWriterAgent",
model=GEMINI_MODEL,
include_contents='none',
# MODIFIED Instruction: Ask for a slightly more developed start
instruction=f"""You are a Creative Writing Assistant tasked with starting a story.
Write the *first draft* of a short story (aim for 2-4 sentences).
Base the content *only* on the topic provided below. Try to introduce a specific element (like a character, a setting detail, or a starting action) to make it engaging.
Topic: {{initial_topic}}
Output *only* the story/document text. Do not add introductions or explanations.
""",
description="Writes the initial document draft based on the topic, aiming for some initial substance.",
output_key=STATE_CURRENT_DOC
)
# STEP 2a: Critic Agent (Inside the Refinement Loop)
critic_agent_in_loop = LlmAgent(
name="CriticAgent",
model=GEMINI_MODEL,
include_contents='none',
# MODIFIED Instruction: More nuanced completion criteria, look for clear improvement paths.
instruction=f"""You are a Constructive Critic AI reviewing a short document draft (typically 2-6 sentences). Your goal is balanced feedback.
**Document to Review:**
```
{{current_document}}
```
**Task:**
Review the document for clarity, engagement, and basic coherence according to the initial topic (if known).
IF you identify 1-2 *clear and actionable* ways the document could be improved to better capture the topic or enhance reader engagement (e.g., "Needs a stronger opening sentence", "Clarify the character's goal"):
Provide these specific suggestions concisely. Output *only* the critique text.
ELSE IF the document is coherent, addresses the topic adequately for its length, and has no glaring errors or obvious omissions:
Respond *exactly* with the phrase "{COMPLETION_PHRASE}" and nothing else. It doesn't need to be perfect, just functionally complete for this stage. Avoid suggesting purely subjective stylistic preferences if the core is sound.
Do not add explanations. Output only the critique OR the exact completion phrase.
""",
description="Reviews the current draft, providing critique if clear improvements are needed, otherwise signals completion.",
output_key=STATE_CRITICISM
)
# STEP 2b: Refiner/Exiter Agent (Inside the Refinement Loop)
refiner_agent_in_loop = LlmAgent(
name="RefinerAgent",
model=GEMINI_MODEL,
# Relies solely on state via placeholders
include_contents='none',
instruction=f"""You are a Creative Writing Assistant refining a document based on feedback OR exiting the process.
**Current Document:**
```
{{current_document}}
```
**Critique/Suggestions:**
{{criticism}}
**Task:**
Analyze the 'Critique/Suggestions'.
IF the critique is *exactly* "{COMPLETION_PHRASE}":
You MUST call the 'exit_loop' function. Do not output any text.
ELSE (the critique contains actionable feedback):
Carefully apply the suggestions to improve the 'Current Document'. Output *only* the refined document text.
Do not add explanations. Either output the refined document OR call the exit_loop function.
""",
description="Refines the document based on critique, or calls exit_loop if critique indicates completion.",
tools=[exit_loop], # Provide the exit_loop tool
output_key=STATE_CURRENT_DOC # Overwrites state['current_document'] with the refined version
)
# STEP 2: Refinement Loop Agent
refinement_loop = LoopAgent(
name="RefinementLoop",
# Agent order is crucial: Critique first, then Refine/Exit
sub_agents=[
critic_agent_in_loop,
refiner_agent_in_loop,
],
max_iterations=5 # Limit loops
)
# STEP 3: Overall Sequential Pipeline
# For ADK tools compatibility, the root agent must be named `root_agent`
root_agent = SequentialAgent(
name="IterativeWritingPipeline",
sub_agents=[
initial_writer_agent, # Run first to create initial doc
refinement_loop # Then run the critique/refine loop
],
description="Writes an initial document and then iteratively refines it with critique using an exit tool."
)
import static com.google.adk.agents.LlmAgent.IncludeContents.NONE;
import com.google.adk.agents.LlmAgent;
import com.google.adk.agents.LoopAgent;
import com.google.adk.agents.SequentialAgent;
import com.google.adk.events.Event;
import com.google.adk.runner.InMemoryRunner;
import com.google.adk.sessions.Session;
import com.google.adk.tools.Annotations.Schema;
import com.google.adk.tools.FunctionTool;
import com.google.adk.tools.ToolContext;
import com.google.genai.types.Content;
import com.google.genai.types.Part;
import io.reactivex.rxjava3.core.Flowable;
import java.util.Map;
public class LoopAgentExample {
// --- Constants ---
private static final String APP_NAME = "IterativeWritingPipeline";
private static final String USER_ID = "test_user_456";
private static final String MODEL_NAME = "gemini-2.0-flash";
// --- State Keys ---
private static final String STATE_CURRENT_DOC = "current_document";
private static final String STATE_CRITICISM = "criticism";
public static void main(String[] args) {
LoopAgentExample loopAgentExample = new LoopAgentExample();
loopAgentExample.runAgent("Write a document about a cat");
}
// --- Tool Definition ---
@Schema(
description =
"Call this function ONLY when the critique indicates no further changes are needed,"
+ " signaling the iterative process should end.")
public static Map<String, Object> exitLoop(@Schema(name = "toolContext") ToolContext toolContext) {
System.out.printf("[Tool Call] exitLoop triggered by %s \n", toolContext.agentName());
toolContext.actions().setEscalate(true);
// Return empty dict as tools should typically return JSON-serializable output
return Map.of();
}
// --- Agent Definitions ---
public void runAgent(String prompt) {
// STEP 1: Initial Writer Agent (Runs ONCE at the beginning)
LlmAgent initialWriterAgent =
LlmAgent.builder()
.model(MODEL_NAME)
.name("InitialWriterAgent")
.description(
"Writes the initial document draft based on the topic, aiming for some initial"
+ " substance.")
.instruction(
"""
You are a Creative Writing Assistant tasked with starting a story.
Write the *first draft* of a short story (aim for 2-4 sentences).
Base the content *only* on the topic provided below. Try to introduce a specific element (like a character, a setting detail, or a starting action) to make it engaging.
Output *only* the story/document text. Do not add introductions or explanations.
""")
.outputKey(STATE_CURRENT_DOC)
.includeContents(NONE)
.build();
// STEP 2a: Critic Agent (Inside the Refinement Loop)
LlmAgent criticAgentInLoop =
LlmAgent.builder()
.model(MODEL_NAME)
.name("CriticAgent")
.description(
"Reviews the current draft, providing critique if clear improvements are needed,"
+ " otherwise signals completion.")
.instruction(
"""
You are a Constructive Critic AI reviewing a short document draft (typically 2-6 sentences). Your goal is balanced feedback.
**Document to Review:**
```
{{current_document}}
```
**Task:**
Review the document for clarity, engagement, and basic coherence according to the initial topic (if known).
IF you identify 1-2 *clear and actionable* ways the document could be improved to better capture the topic or enhance reader engagement (e.g., "Needs a stronger opening sentence", "Clarify the character's goal"):
Provide these specific suggestions concisely. Output *only* the critique text.
ELSE IF the document is coherent, addresses the topic adequately for its length, and has no glaring errors or obvious omissions:
Respond *exactly* with the phrase "No major issues found." and nothing else. It doesn't need to be perfect, just functionally complete for this stage. Avoid suggesting purely subjective stylistic preferences if the core is sound.
Do not add explanations. Output only the critique OR the exact completion phrase.
""")
.outputKey(STATE_CRITICISM)
.includeContents(NONE)
.build();
// STEP 2b: Refiner/Exiter Agent (Inside the Refinement Loop)
LlmAgent refinerAgentInLoop =
LlmAgent.builder()
.model(MODEL_NAME)
.name("RefinerAgent")
.description(
"Refines the document based on critique, or calls exitLoop if critique indicates"
+ " completion.")
.instruction(
"""
You are a Creative Writing Assistant refining a document based on feedback OR exiting the process.
**Current Document:**
```
{{current_document}}
```
**Critique/Suggestions:**
{{criticism}}
**Task:**
Analyze the 'Critique/Suggestions'.
IF the critique is *exactly* "No major issues found.":
You MUST call the 'exitLoop' function. Do not output any text.
ELSE (the critique contains actionable feedback):
Carefully apply the suggestions to improve the 'Current Document'. Output *only* the refined document text.
Do not add explanations. Either output the refined document OR call the exitLoop function.
""")
.outputKey(STATE_CURRENT_DOC)
.includeContents(NONE)
.tools(FunctionTool.create(LoopAgentExample.class, "exitLoop"))
.build();
// STEP 2: Refinement Loop Agent
LoopAgent refinementLoop =
LoopAgent.builder()
.name("RefinementLoop")
.description("Repeatedly refines the document with critique and then exits.")
.subAgents(criticAgentInLoop, refinerAgentInLoop)
.maxIterations(5)
.build();
// STEP 3: Overall Sequential Pipeline
SequentialAgent iterativeWriterAgent =
SequentialAgent.builder()
.name(APP_NAME)
.description(
"Writes an initial document and then iteratively refines it with critique using an"
+ " exit tool.")
.subAgents(initialWriterAgent, refinementLoop)
.build();
// Create an InMemoryRunner
InMemoryRunner runner = new InMemoryRunner(iterativeWriterAgent, APP_NAME);
// InMemoryRunner automatically creates a session service. Create a session using the service
Session session = runner.sessionService().createSession(APP_NAME, USER_ID).blockingGet();
Content userMessage = Content.fromParts(Part.fromText(prompt));
// Run the agent
Flowable<Event> eventStream = runner.runAsync(USER_ID, session.id(), userMessage);
// Stream event response
eventStream.blockingForEach(
event -> {
if (event.finalResponse()) {
System.out.println(event.stringifyContent());
}
});
}
}