Skip to content

内置工具

这些内置工具提供现成可用的功能,如 Google 搜索或代码执行器,为智能体提供常见功能。例如,需要从网络检索信息的智能体可以直接使用 google_search 工具,无需任何额外设置。

如何使用

  1. 导入: 从 tools 模块导入所需工具。在 Python 中为 agents.tools,在 Java 中为 com.google.adk.tools
  2. 配置: 初始化工具,并根据需要提供必要参数。
  3. 注册: 将初始化后的工具添加到你的智能体的 tools 列表中。

一旦添加到智能体中,智能体可以根据用户提示和其指令决定使用哪个工具。当智能体调用工具时,框架会处理工具的执行。重要提示:请参阅本页的限制部分。

可用的内置工具

注意:Java 目前仅支持 Google 搜索和代码执行工具。

Google 搜索

google_search 工具允许智能体使用 Google 搜索执行网络搜索。google_search 工具仅与 Gemini 2 模型兼容。

使用 google_search 工具时的附加要求

当你使用 Google 搜索进行接地,并在你的响应中收到搜索建议时,你必须在生产环境和应用程序中显示这些搜索建议。 有关使用 Google 搜索进行接地的更多信息,请参阅 Google AI StudioVertex AI 的 Google 搜索接地文档。Gemini 响应中的 UI 代码(HTML)作为 renderedContent 返回,你需要根据政策在你的应用中显示这些 HTML。

from google.adk.agents import Agent
from google.adk.runners import Runner
from google.adk.sessions import InMemorySessionService
from google.adk.tools import google_search
from google.genai import types

APP_NAME="google_search_agent"
USER_ID="user1234"
SESSION_ID="1234"


root_agent = Agent(
    name="basic_search_agent",
    model="gemini-2.0-flash",
    description="Agent to answer questions using Google Search.",
    instruction="I can answer your questions by searching the internet. Just ask me anything!",
    # google_search is a pre-built tool which allows the agent to perform Google searches.
    tools=[google_search]
)

# Session and Runner
session_service = InMemorySessionService()
session = session_service.create_session(app_name=APP_NAME, user_id=USER_ID, session_id=SESSION_ID)
runner = Runner(agent=root_agent, app_name=APP_NAME, session_service=session_service)


# Agent Interaction
def call_agent(query):
    """
    Helper function to call the agent with a query.
    """
    content = types.Content(role='user', parts=[types.Part(text=query)])
    events = runner.run(user_id=USER_ID, session_id=SESSION_ID, new_message=content)

    for event in events:
        if event.is_final_response():
            final_response = event.content.parts[0].text
            print("Agent Response: ", final_response)

call_agent("what's the latest ai news?")
import com.google.adk.agents.BaseAgent;
import com.google.adk.agents.LlmAgent;
import com.google.adk.runner.Runner;
import com.google.adk.sessions.InMemorySessionService;
import com.google.adk.sessions.Session;
import com.google.adk.tools.GoogleSearchTool;
import com.google.common.collect.ImmutableList;
import com.google.genai.types.Content;
import com.google.genai.types.Part;

public class GoogleSearchAgentApp {

  private static final String APP_NAME = "Google Search_agent";
  private static final String USER_ID = "user1234";
  private static final String SESSION_ID = "1234";

  /**
   * Calls the agent with the given query and prints the final response.
   *
   * @param runner The runner to use.
   * @param query The query to send to the agent.
   */
  public static void callAgent(Runner runner, String query) {
    Content content =
        Content.fromParts(Part.fromText(query));

    InMemorySessionService sessionService = (InMemorySessionService) runner.sessionService();
    Session session =
        sessionService
            .createSession(APP_NAME, USER_ID, /* state= */ null, SESSION_ID)
            .blockingGet();

    runner
        .runAsync(session.userId(), session.id(), content)
        .forEach(
            event -> {
              if (event.finalResponse()
                  && event.content().isPresent()
                  && event.content().get().parts().isPresent()
                  && !event.content().get().parts().get().isEmpty()
                  && event.content().get().parts().get().get(0).text().isPresent()) {
                String finalResponse = event.content().get().parts().get().get(0).text().get();
                System.out.println("Agent Response: " + finalResponse);
              }
            });
  }

  public static void main(String[] args) {
    // Google Search is a pre-built tool which allows the agent to perform Google searches.
    GoogleSearchTool googleSearchTool = new GoogleSearchTool();

    BaseAgent rootAgent =
        LlmAgent.builder()
            .name("basic_search_agent")
            .model("gemini-2.0-flash") // Ensure to use a Gemini 2.0 model for Google Search Tool
            .description("Agent to answer questions using Google Search.")
            .instruction(
                "I can answer your questions by searching the internet. Just ask me anything!")
            .tools(ImmutableList.of(googleSearchTool))
            .build();

    // Session and Runner
    InMemorySessionService sessionService = new InMemorySessionService();
    Runner runner = new Runner(rootAgent, APP_NAME, null, sessionService);

    // Agent Interaction
    callAgent(runner, "what's the latest ai news?");
  }
}

代码执行

built_in_code_execution 工具使智能体能够执行代码,特别是当使用 Gemini 2 模型时。这允许模型执行计算、数据操作或运行小型脚本等任务。

# Copyright 2025 Google LLC
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import asyncio
from google.adk.agents import LlmAgent
from google.adk.runners import Runner
from google.adk.sessions import InMemorySessionService
from google.adk.code_executors import BuiltInCodeExecutor
from google.genai import types

AGENT_NAME = "calculator_agent"
APP_NAME = "calculator"
USER_ID = "user1234"
SESSION_ID = "session_code_exec_async"
GEMINI_MODEL = "gemini-2.0-flash"

# Agent Definition
code_agent = LlmAgent(
    name=AGENT_NAME,
    model=GEMINI_MODEL,
    executor=[BuiltInCodeExecutor],
    instruction="""You are a calculator agent.
    When given a mathematical expression, write and execute Python code to calculate the result.
    Return only the final numerical result as plain text, without markdown or code blocks.
    """,
    description="Executes Python code to perform calculations.",
)

# Session and Runner
session_service = InMemorySessionService()
session = session_service.create_session(
    app_name=APP_NAME, user_id=USER_ID, session_id=SESSION_ID
)
runner = Runner(agent=code_agent, app_name=APP_NAME, session_service=session_service)


# Agent Interaction (Async)
async def call_agent_async(query):
    content = types.Content(role="user", parts=[types.Part(text=query)])
    print(f"\n--- Running Query: {query} ---")
    final_response_text = "No final text response captured."
    try:
        # Use run_async
        async for event in runner.run_async(
            user_id=USER_ID, session_id=SESSION_ID, new_message=content
        ):
            print(f"Event ID: {event.id}, Author: {event.author}")

            # --- Check for specific parts FIRST ---
            has_specific_part = False
            if event.content and event.content.parts:
                for part in event.content.parts:  # Iterate through all parts
                    if part.executable_code:
                        # Access the actual code string via .code
                        print(
                            f"  Debug: Agent generated code:\n```python\n{part.executable_code.code}\n```"
                        )
                        has_specific_part = True
                    elif part.code_execution_result:
                        # Access outcome and output correctly
                        print(
                            f"  Debug: Code Execution Result: {part.code_execution_result.outcome} - Output:\n{part.code_execution_result.output}"
                        )
                        has_specific_part = True
                    # Also print any text parts found in any event for debugging
                    elif part.text and not part.text.isspace():
                        print(f"  Text: '{part.text.strip()}'")
                        # Do not set has_specific_part=True here, as we want the final response logic below

            # --- Check for final response AFTER specific parts ---
            # Only consider it final if it doesn't have the specific code parts we just handled
            if not has_specific_part and event.is_final_response():
                if (
                    event.content
                    and event.content.parts
                    and event.content.parts[0].text
                ):
                    final_response_text = event.content.parts[0].text.strip()
                    print(f"==> Final Agent Response: {final_response_text}")
                else:
                    print("==> Final Agent Response: [No text content in final event]")

    except Exception as e:
        print(f"ERROR during agent run: {e}")
    print("-" * 30)


# Main async function to run the examples
async def main():
    await call_agent_async("Calculate the value of (5 + 7) * 3")
    await call_agent_async("What is 10 factorial?")


# Execute the main async function
try:
    asyncio.run(main())
except RuntimeError as e:
    # Handle specific error when running asyncio.run in an already running loop (like Jupyter/Colab)
    if "cannot be called from a running event loop" in str(e):
        print("\nRunning in an existing event loop (like Colab/Jupyter).")
        print("Please run `await main()` in a notebook cell instead.")
        # If in an interactive environment like a notebook, you might need to run:
        # await main()
    else:
        raise e  # Re-raise other runtime errors
import com.google.adk.agents.BaseAgent;
import com.google.adk.agents.LlmAgent;
import com.google.adk.runner.Runner;
import com.google.adk.sessions.InMemorySessionService;
import com.google.adk.sessions.Session;
import com.google.adk.tools.BuiltInCodeExecutionTool;
import com.google.common.collect.ImmutableList;
import com.google.genai.types.Content;
import com.google.genai.types.Part;

public class CodeExecutionAgentApp {

  private static final String AGENT_NAME = "calculator_agent";
  private static final String APP_NAME = "calculator";
  private static final String USER_ID = "user1234";
  private static final String SESSION_ID = "session_code_exec_sync";
  private static final String GEMINI_MODEL = "gemini-2.0-flash";

  /**
   * Calls the agent with a query and prints the interaction events and final response.
   *
   * @param runner The runner instance for the agent.
   * @param query The query to send to the agent.
   */
  public static void callAgent(Runner runner, String query) {
    Content content =
        Content.builder().role("user").parts(ImmutableList.of(Part.fromText(query))).build();

    InMemorySessionService sessionService = (InMemorySessionService) runner.sessionService();
    Session session =
        sessionService
            .createSession(APP_NAME, USER_ID, /* state= */ null, SESSION_ID)
            .blockingGet();

    System.out.println("\n--- Running Query: " + query + " ---");
    final String[] finalResponseText = {"No final text response captured."};

    try {
      runner
          .runAsync(session.userId(), session.id(), content)
          .forEach(
              event -> {
                System.out.println("Event ID: " + event.id() + ", Author: " + event.author());

                boolean hasSpecificPart = false;
                if (event.content().isPresent() && event.content().get().parts().isPresent()) {
                  for (Part part : event.content().get().parts().get()) {
                    if (part.executableCode().isPresent()) {
                      System.out.println(
                          "  Debug: Agent generated code:\n```python\n"
                              + part.executableCode().get().code()
                              + "\n```");
                      hasSpecificPart = true;
                    } else if (part.codeExecutionResult().isPresent()) {
                      System.out.println(
                          "  Debug: Code Execution Result: "
                              + part.codeExecutionResult().get().outcome()
                              + " - Output:\n"
                              + part.codeExecutionResult().get().output());
                      hasSpecificPart = true;
                    } else if (part.text().isPresent() && !part.text().get().trim().isEmpty()) {
                      System.out.println("  Text: '" + part.text().get().trim() + "'");
                    }
                  }
                }

                if (!hasSpecificPart && event.finalResponse()) {
                  if (event.content().isPresent()
                      && event.content().get().parts().isPresent()
                      && !event.content().get().parts().get().isEmpty()
                      && event.content().get().parts().get().get(0).text().isPresent()) {
                    finalResponseText[0] =
                        event.content().get().parts().get().get(0).text().get().trim();
                    System.out.println("==> Final Agent Response: " + finalResponseText[0]);
                  } else {
                    System.out.println(
                        "==> Final Agent Response: [No text content in final event]");
                  }
                }
              });
    } catch (Exception e) {
      System.err.println("ERROR during agent run: " + e.getMessage());
      e.printStackTrace();
    }
    System.out.println("------------------------------");
  }

  public static void main(String[] args) {
    BuiltInCodeExecutionTool codeExecutionTool = new BuiltInCodeExecutionTool();

    BaseAgent codeAgent =
        LlmAgent.builder()
            .name(AGENT_NAME)
            .model(GEMINI_MODEL)
            .tools(ImmutableList.of(codeExecutionTool))
            .instruction(
                """
                                You are a calculator agent.
                                When given a mathematical expression, write and execute Python code to calculate the result.
                                Return only the final numerical result as plain text, without markdown or code blocks.
                                """)
            .description("Executes Python code to perform calculations.")
            .build();

    InMemorySessionService sessionService = new InMemorySessionService();
    Runner runner = new Runner(codeAgent, APP_NAME, null, sessionService);

    callAgent(runner, "Calculate the value of (5 + 7) * 3");
    callAgent(runner, "What is 10 factorial?");
  }
}

vertex_ai_search_tool 使用 Google Cloud 的 Vertex AI 搜索,使智能体能够搜索你的私有、已配置的数据存储(例如,内部文档、公司政策、知识库)。这个内置工具要求你在配置期间提供特定的数据存储 ID。

import asyncio

from google.adk.agents import LlmAgent
from google.adk.runners import Runner
from google.adk.sessions import InMemorySessionService
from google.genai import types
from google.adk.tools import VertexAiSearchTool

# Replace with your actual Vertex AI Search Datastore ID
# Format: projects/<PROJECT_ID>/locations/<LOCATION>/collections/default_collection/dataStores/<DATASTORE_ID>
# e.g., "projects/12345/locations/us-central1/collections/default_collection/dataStores/my-datastore-123"
YOUR_DATASTORE_ID = "YOUR_DATASTORE_ID_HERE"

# Constants
APP_NAME_VSEARCH = "vertex_search_app"
USER_ID_VSEARCH = "user_vsearch_1"
SESSION_ID_VSEARCH = "session_vsearch_1"
AGENT_NAME_VSEARCH = "doc_qa_agent"
GEMINI_2_FLASH = "gemini-2.0-flash"

# Tool Instantiation
# You MUST provide your datastore ID here.
vertex_search_tool = VertexAiSearchTool(data_store_id=YOUR_DATASTORE_ID)

# Agent Definition
doc_qa_agent = LlmAgent(
    name=AGENT_NAME_VSEARCH,
    model=GEMINI_2_FLASH, # Requires Gemini model
    tools=[vertex_search_tool],
    instruction=f"""You are a helpful assistant that answers questions based on information found in the document store: {YOUR_DATASTORE_ID}.
    Use the search tool to find relevant information before answering.
    If the answer isn't in the documents, say that you couldn't find the information.
    """,
    description="Answers questions using a specific Vertex AI Search datastore.",
)

# Session and Runner Setup
session_service_vsearch = InMemorySessionService()
runner_vsearch = Runner(
    agent=doc_qa_agent, app_name=APP_NAME_VSEARCH, session_service=session_service_vsearch
)
session_vsearch = session_service_vsearch.create_session(
    app_name=APP_NAME_VSEARCH, user_id=USER_ID_VSEARCH, session_id=SESSION_ID_VSEARCH
)

# Agent Interaction Function
async def call_vsearch_agent_async(query):
    print("\n--- Running Vertex AI Search Agent ---")
    print(f"Query: {query}")
    if "YOUR_DATASTORE_ID_HERE" in YOUR_DATASTORE_ID:
        print("Skipping execution: Please replace YOUR_DATASTORE_ID_HERE with your actual datastore ID.")
        print("-" * 30)
        return

    content = types.Content(role='user', parts=[types.Part(text=query)])
    final_response_text = "No response received."
    try:
        async for event in runner_vsearch.run_async(
            user_id=USER_ID_VSEARCH, session_id=SESSION_ID_VSEARCH, new_message=content
        ):
            # Like Google Search, results are often embedded in the model's response.
            if event.is_final_response() and event.content and event.content.parts:
                final_response_text = event.content.parts[0].text.strip()
                print(f"Agent Response: {final_response_text}")
                # You can inspect event.grounding_metadata for source citations
                if event.grounding_metadata:
                    print(f"  (Grounding metadata found with {len(event.grounding_metadata.grounding_attributions)} attributions)")

    except Exception as e:
        print(f"An error occurred: {e}")
        print("Ensure your datastore ID is correct and the service account has permissions.")
    print("-" * 30)

# --- Run Example ---
async def run_vsearch_example():
    # Replace with a question relevant to YOUR datastore content
    await call_vsearch_agent_async("Summarize the main points about the Q2 strategy document.")
    await call_vsearch_agent_async("What safety procedures are mentioned for lab X?")

# Execute the example
# await run_vsearch_example()

# Running locally due to potential colab asyncio issues with multiple awaits
try:
    asyncio.run(run_vsearch_example())
except RuntimeError as e:
    if "cannot be called from a running event loop" in str(e):
        print("Skipping execution in running event loop (like Colab/Jupyter). Run locally.")
    else:
        raise e

将内置工具与其他工具一起使用

以下代码示例演示了如何使用多个内置工具,或如何通过使用多个智能体将内置工具与其他工具一起使用:

from google.adk.tools import agent_tool
from google.adk.agents import Agent
from google.adk.tools import google_search
from google.adk.code_executors import BuiltInCodeExecutor


search_agent = Agent(
    model='gemini-2.0-flash',
    name='SearchAgent',
    instruction="""
    你是 Google 搜索专家
    """,
    tools=[google_search],
)
coding_agent = Agent(
    model='gemini-2.0-flash',
    name='CodeAgent',
    instruction="""
    你是代码执行专家
    """,
    code_executor=[BuiltInCodeExecutor],
)
root_agent = Agent(
    name="RootAgent",
    model="gemini-2.0-flash",
    description="Root Agent",
    tools=[agent_tool.AgentTool(agent=search_agent), agent_tool.AgentTool(agent=coding_agent)],
)
import com.google.adk.agents.BaseAgent;
import com.google.adk.agents.LlmAgent;
import com.google.adk.tools.AgentTool;
import com.google.adk.tools.BuiltInCodeExecutionTool;
import com.google.adk.tools.GoogleSearchTool;
import com.google.common.collect.ImmutableList;

public class NestedAgentApp {

  private static final String MODEL_ID = "gemini-2.0-flash";

  public static void main(String[] args) {

    // 定义 SearchAgent
    LlmAgent searchAgent =
        LlmAgent.builder()
            .model(MODEL_ID)
            .name("SearchAgent")
            .instruction("你是 Google 搜索专家")
            .tools(new GoogleSearchTool()) // 实例化 GoogleSearchTool
            .build();


    // 定义 CodingAgent
    LlmAgent codingAgent =
        LlmAgent.builder()
            .model(MODEL_ID)
            .name("CodeAgent")
            .instruction("你是代码执行专家")
            .tools(new BuiltInCodeExecutionTool()) // 实例化 BuiltInCodeExecutionTool
            .build();

    // 定义 RootAgent,使用 AgentTool.create() 包装 SearchAgent 和 CodingAgent
    BaseAgent rootAgent =
        LlmAgent.builder()
            .name("RootAgent")
            .model(MODEL_ID)
            .description("Root Agent")
            .tools(
                AgentTool.create(searchAgent), // 使用 create 方法
                AgentTool.create(codingAgent)   // 使用 create 方法
             )
            .build();

    // 注意:此示例仅演示智能体定义。
    // 若要运行这些智能体,你需要将它们与 Runner 和 SessionService 集成,
    // 类似于前面的示例。
    System.out.println("Agents defined successfully:");
    System.out.println("  Root Agent: " + rootAgent.name());
    System.out.println("  Search Agent (nested): " + searchAgent.name());
    System.out.println("  Code Agent (nested): " + codingAgent.name());
  }
}

限制

Warning

目前,对于每个根智能体或单个智能体,仅支持一个内置工具。相同的代理中不能使用其他任何类型的工具。

例如,以下方法在根智能体(或单个智能体)中使用内置工具和其他工具被支持的:

root_agent = Agent(
    name="RootAgent",
    model="gemini-2.0-flash",
    description="Root Agent",
    tools=[custom_function], 
    executor=[BuiltInCodeExecutor] # <-- 与 tools 一起使用时不支持
)
 LlmAgent searchAgent =
        LlmAgent.builder()
            .model(MODEL_ID)
            .name("SearchAgent")
            .instruction("你是 Google 搜索专家")
            .tools(new GoogleSearchTool(), new YourCustomTool()) // <-- 不支持
            .build();

Warning

内置工具不能在子智能体中使用。

例如,以下在子智能体中使用内置工具的方法目前不支持:

search_agent = Agent(
    model='gemini-2.0-flash',
    name='SearchAgent',
    instruction="""
    你是 Google 搜索专家
    """,
    tools=[google_search],
)
coding_agent = Agent(
    model='gemini-2.0-flash',
    name='CodeAgent',
    instruction="""
    你是代码执行专家
    """,
    executor=[BuiltInCodeExecutor],
)
root_agent = Agent(
    name="RootAgent",
    model="gemini-2.0-flash",
    description="Root Agent",
    sub_agents=[
        search_agent,
        coding_agent
    ],
)
LlmAgent searchAgent =
    LlmAgent.builder()
        .model("gemini-2.0-flash")
        .name("SearchAgent")
        .instruction("你是 Google 搜索专家")
        .tools(new GoogleSearchTool())
        .build();

LlmAgent codingAgent =
    LlmAgent.builder()
        .model("gemini-2.0-flash")
        .name("CodeAgent")
        .instruction("你是代码执行专家")
        .tools(new BuiltInCodeExecutionTool())
        .build();


LlmAgent rootAgent =
    LlmAgent.builder()
        .name("RootAgent")
        .model("gemini-2.0-flash")
        .description("Root Agent")
        .subAgents(searchAgent, codingAgent) // 不支持,因为子智能体使用了内置工具。
        .build();