Skip to content

OpenAPI 集成

python_only

集成 REST API 与 OpenAPI

ADK 通过直接从 OpenAPI 规范 (v3.x) 自动生成可调用的工具,简化了与外部 REST API 的交互。这消除了为每个 API 端点手动定义单独函数工具的需要。

核心优势

使用 OpenAPIToolset 从你现有的 API 文档(OpenAPI 规范)即时创建智能体工具(RestApiTool),使智能体能够无缝调用你的 Web 服务。

关键组件

  • OpenAPIToolset:这是你将使用的主要类。你使用 OpenAPI 规范初始化它,它处理工具的解析和生成。
  • RestApiTool:这个类表示单个可调用的 API 操作(如 GET /pets/{petId}POST /pets)。OpenAPIToolset 为规范中定义的每个操作创建一个 RestApiTool 实例。

工作原理

当你使用 OpenAPIToolset 时,该过程包括以下主要步骤:

  1. 初始化和解析

    • 你向 OpenAPIToolset 提供 OpenAPI 规范,可以是 Python 字典、JSON 字符串或 YAML 字符串。
    • 工具集在内部解析规范,解析任何内部引用($ref)以理解完整的 API 结构。
  2. 操作发现

    • 它识别规范的 paths 对象中定义的所有有效 API 操作(例如,GETPOSTPUTDELETE)。
  3. 工具生成

    • 对于每个发现的操作,OpenAPIToolset 自动创建相应的 RestApiTool 实例。
    • 工具名称:从规范中的 operationId 派生(转换为 snake_case,最多 60 个字符)。如果缺少 operationId,则从方法和路径生成名称。
    • 工具描述:使用操作的 summarydescription 提供给 LLM。
    • API 详情:在内部存储所需的 HTTP 方法、路径、服务器基本 URL、参数(路径、查询、头部、cookie)和请求体模式。
  4. RestApiTool 功能:每个生成的 RestApiTool

    • 模式生成:根据操作的参数和请求体动态创建 FunctionDeclaration。这个模式告诉 LLM 如何调用工具(期望哪些参数)。
    • 执行:当被 LLM 调用时,它使用 LLM 提供的参数和 OpenAPI 规范中的详细信息构建正确的 HTTP 请求(URL、头部、查询参数、正文)。它处理认证(如果配置)并使用 requests 库执行 API 调用。
    • 响应处理:将 API 响应(通常是 JSON)返回给智能体流程。
  5. 认证:在初始化 OpenAPIToolset 时,你可以配置全局认证(如 API 密钥或 OAuth - 详情参见 认证)。这个认证配置会自动应用于所有生成的 RestApiTool 实例。

使用工作流程

按照以下步骤将 OpenAPI 规范集成到你的智能体中:

  1. 获取规范:获取你的 OpenAPI 规范文档(例如,从 .json.yaml 文件加载,从 URL 获取)。
  2. 实例化工具集:创建一个 OpenAPIToolset 实例,传递规范内容和类型(spec_str/spec_dictspec_str_type)。如果 API 需要,提供认证详情(auth_schemeauth_credential)。

    from google.adk.tools.openapi_tool.openapi_spec_parser.openapi_toolset import OpenAPIToolset
    
    # JSON 字符串示例
    openapi_spec_json = '...' # 你的 OpenAPI JSON 字符串
    toolset = OpenAPIToolset(spec_str=openapi_spec_json, spec_str_type="json")
    
    # 字典示例
    # openapi_spec_dict = {...} # 你的 OpenAPI 规范作为字典
    # toolset = OpenAPIToolset(spec_dict=openapi_spec_dict)
    
  3. Add to Agent: Include the retrieved tools in your LlmAgent's tools list.

    from google.adk.agents import LlmAgent
    
    my_agent = LlmAgent(
        name="api_interacting_agent",
        model="gemini-2.0-flash", # Or your preferred model
        tools=[toolset], # Pass the toolset
        # ... other agent config ...
    )
    
  4. Instruct Agent: Update your agent's instructions to inform it about the new API capabilities and the names of the tools it can use (e.g., list_pets, create_pet). The tool descriptions generated from the spec will also help the LLM.

  5. Run Agent: Execute your agent using the Runner. When the LLM determines it needs to call one of the APIs, it will generate a function call targeting the appropriate RestApiTool, which will then handle the HTTP request automatically.

示例

这个示例演示了从简单的宠物商店 OpenAPI 规范生成工具(使用 httpbin.org 进行模拟响应)并通过智能体与它们交互。

???+ "代码:宠物商店 API" {: #code-pet-store-api}

```python title="openapi_example.py"
# Copyright 2025 Google LLC
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import asyncio
import uuid # For unique session IDs
from dotenv import load_dotenv

from google.adk.agents import LlmAgent
from google.adk.runners import Runner
from google.adk.sessions import InMemorySessionService
from google.genai import types

# --- OpenAPI Tool Imports ---
from google.adk.tools.openapi_tool.openapi_spec_parser.openapi_toolset import OpenAPIToolset

# --- Load Environment Variables (If ADK tools need them, e.g., API keys) ---
load_dotenv() # Create a .env file in the same directory if needed

# --- Constants ---
APP_NAME_OPENAPI = "openapi_petstore_app"
USER_ID_OPENAPI = "user_openapi_1"
SESSION_ID_OPENAPI = f"session_openapi_{uuid.uuid4()}" # Unique session ID
AGENT_NAME_OPENAPI = "petstore_manager_agent"
GEMINI_MODEL = "gemini-2.0-flash"

# --- Sample OpenAPI Specification (JSON String) ---
# A basic Pet Store API example using httpbin.org as a mock server
openapi_spec_string = """
{
  "openapi": "3.0.0",
  "info": {
    "title": "Simple Pet Store API (Mock)",
    "version": "1.0.1",
    "description": "An API to manage pets in a store, using httpbin for responses."
  },
  "servers": [
    {
      "url": "https://httpbin.org",
      "description": "Mock server (httpbin.org)"
    }
  ],
  "paths": {
    "/get": {
      "get": {
        "summary": "List all pets (Simulated)",
        "operationId": "listPets",
        "description": "Simulates returning a list of pets. Uses httpbin's /get endpoint which echoes query parameters.",
        "parameters": [
          {
            "name": "limit",
            "in": "query",
            "description": "Maximum number of pets to return",
            "required": false,
            "schema": { "type": "integer", "format": "int32" }
          },
          {
             "name": "status",
             "in": "query",
             "description": "Filter pets by status",
             "required": false,
             "schema": { "type": "string", "enum": ["available", "pending", "sold"] }
          }
        ],
        "responses": {
          "200": {
            "description": "A list of pets (echoed query params).",
            "content": { "application/json": { "schema": { "type": "object" } } }
          }
        }
      }
    },
    "/post": {
      "post": {
        "summary": "Create a pet (Simulated)",
        "operationId": "createPet",
        "description": "Simulates adding a new pet. Uses httpbin's /post endpoint which echoes the request body.",
        "requestBody": {
          "description": "Pet object to add",
          "required": true,
          "content": {
            "application/json": {
              "schema": {
                "type": "object",
                "required": ["name"],
                "properties": {
                  "name": {"type": "string", "description": "Name of the pet"},
                  "tag": {"type": "string", "description": "Optional tag for the pet"}
                }
              }
            }
          }
        },
        "responses": {
          "201": {
            "description": "Pet created successfully (echoed request body).",
            "content": { "application/json": { "schema": { "type": "object" } } }
          }
        }
      }
    },
    "/get?petId={petId}": {
      "get": {
        "summary": "Info for a specific pet (Simulated)",
        "operationId": "showPetById",
        "description": "Simulates returning info for a pet ID. Uses httpbin's /get endpoint.",
        "parameters": [
          {
            "name": "petId",
            "in": "path",
            "description": "This is actually passed as a query param to httpbin /get",
            "required": true,
            "schema": { "type": "integer", "format": "int64" }
          }
        ],
        "responses": {
          "200": {
            "description": "Information about the pet (echoed query params)",
            "content": { "application/json": { "schema": { "type": "object" } } }
          },
          "404": { "description": "Pet not found (simulated)" }
        }
      }
    }
  }
}
"""

# --- Create OpenAPIToolset ---
petstore_toolset = OpenAPIToolset(
    spec_str=openapi_spec_string,
    spec_str_type='json',
    # No authentication needed for httpbin.org
)

# --- Agent Definition ---
root_agent = LlmAgent(
    name=AGENT_NAME_OPENAPI,
    model=GEMINI_MODEL,
    tools=[petstore_toolset], # Pass the list of RestApiTool objects
    instruction="""You are a Pet Store assistant managing pets via an API.
    Use the available tools to fulfill user requests.
    When creating a pet, confirm the details echoed back by the API.
    When listing pets, mention any filters used (like limit or status).
    When showing a pet by ID, state the ID you requested.
    """,
    description="Manages a Pet Store using tools generated from an OpenAPI spec."
)

# --- Session and Runner Setup ---
async def setup_session_and_runner():
    session_service_openapi = InMemorySessionService()
    runner_openapi = Runner(
        agent=root_agent,
        app_name=APP_NAME_OPENAPI,
        session_service=session_service_openapi,
    )
    await session_service_openapi.create_session(
        app_name=APP_NAME_OPENAPI,
        user_id=USER_ID_OPENAPI,
        session_id=SESSION_ID_OPENAPI,
    )
    return runner_openapi

# --- Agent Interaction Function ---
async def call_openapi_agent_async(query, runner_openapi):
    print("\n--- Running OpenAPI Pet Store Agent ---")
    print(f"Query: {query}")

    content = types.Content(role='user', parts=[types.Part(text=query)])
    final_response_text = "Agent did not provide a final text response."
    try:
        async for event in runner_openapi.run_async(
            user_id=USER_ID_OPENAPI, session_id=SESSION_ID_OPENAPI, new_message=content
            ):
            # Optional: Detailed event logging for debugging
            # print(f"  DEBUG Event: Author={event.author}, Type={'Final' if event.is_final_response() else 'Intermediate'}, Content={str(event.content)[:100]}...")
            if event.get_function_calls():
                call = event.get_function_calls()[0]
                print(f"  Agent Action: Called function '{call.name}' with args {call.args}")
            elif event.get_function_responses():
                response = event.get_function_responses()[0]
                print(f"  Agent Action: Received response for '{response.name}'")
                # print(f"  Tool Response Snippet: {str(response.response)[:200]}...") # Uncomment for response details
            elif event.is_final_response() and event.content and event.content.parts:
                # Capture the last final text response
                final_response_text = event.content.parts[0].text.strip()

        print(f"Agent Final Response: {final_response_text}")

    except Exception as e:
        print(f"An error occurred during agent run: {e}")
        import traceback
        traceback.print_exc() # Print full traceback for errors
    print("-" * 30)

# --- Run Examples ---
async def run_openapi_example():
    runner_openapi = await setup_session_and_runner()

    # Trigger listPets
    await call_openapi_agent_async("Show me the pets available.", runner_openapi)
    # Trigger createPet
    await call_openapi_agent_async("Please add a new dog named 'Dukey'.", runner_openapi)
    # Trigger showPetById
    await call_openapi_agent_async("Get info for pet with ID 123.", runner_openapi)

# --- Execute ---
if __name__ == "__main__":
    print("Executing OpenAPI example...")
    # Use asyncio.run() for top-level execution
    try:
        asyncio.run(run_openapi_example())
    except RuntimeError as e:
        if "cannot be called from a running event loop" in str(e):
            print("Info: Cannot run asyncio.run from a running event loop (e.g., Jupyter/Colab).")
            # If in Jupyter/Colab, you might need to run like this:
            # await run_openapi_example()
        else:
            raise e
    print("OpenAPI example finished.")

```